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Scaling properties of saddle-node bifurcations on fractal basin boundaries
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We analyze situations where a saddle-node bifurcation occurs on a fractal basin boundary. Specifically, we
are interested in what happens when a system parameter is slowly swept in time through the bifurcation. Such
situations are known to be indeterminate in the sense that it is difficult to predict the eventual fate of an orbit
that tracks the prebifurcation node attractor as the system parameter is swept through the bifurcation. In this
paper we investigate the scaling of~1! the fractal basin boundary of the static~i.e., unswept! system near the
saddle-node bifurcation,~2! the dependence of the orbit’s final destination on the sweeping rate,~3! the
dependence of the time it takes for an attractor to capture a swept orbit on the sweeping rate, and~4! the
dependence of the final attractor capture probability on the noise level. With respect to noise, our main result
is that the effect of noise scales with the 5/6 power of the parameter drift rate. Our approach is to first
investigate all these issues using one-dimensional map models. The simplification of treatment inherent in one
dimension greatly facilitates analysis and numerical experiment, aiding us in obtaining the new results listed
above. Following our one-dimensional investigations, we explain that these results can be applied to two-
dimensional systems. We show, through numerical experiments on a periodically forced second-order differ-
ential equation example, that the scalings we have found also apply to systems that result in two-dimensional
maps.
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I. INTRODUCTION

It is common for dynamical systems to have two or mo
coexisting attractors. In predicting the long-term behavior
such a system, it is important to determine sets of ini
conditions of orbits that approach each attractor~i.e., the
basins of attraction!. The boundaries of such sets are oft
fractal ~@1#, Chap. 5 of@2#, and references therein!. The fine-
scale fractal structure of such a boundary implies increa
sensitivity to errors in the initial conditions: Even a cons
erable decrease in the uncertainty of initial conditions m
yield only a relatively small decrease in the probability
making an error in determining in which basin such an init
condition belongs@1,2#. For a discussion of fractal basi
boundaries in experiments, see Chap. 14 of@3#.

Thompson and Soliman@4# showed that another source
uncertainty induced by fractal basin boundaries may aris
situations in which there is slow~adiabatic! variation of the
system. For example, consider a fixed-point attractor o
map~a node!. As a system parameter varies slowly, an or
initially placed on the node attractor moves with tim
closely following the location of the solution for the fixe
point in the absence of the temporal parameter variation
the parameter varies, the node attractor may suffer a sad
node bifurcation. For definiteness, say that the node attra
exists for values of the parameterm in the rangem,m* and
that the saddle-node bifurcation of the node occurs am

*Permanent address: Department of Econometrics, Universit
Groningen, P.O. Box 800, NL-9700 AV, Groningen, The Neth
lands.

†Also at Department of Electrical and Computer Engineeri
University of Maryland, College Park, MD 20742.
1063-651X/2003/68~6!/066213~16!/$20.00 68 0662
f
l

d

y

l

in

a
t
,

s
le-
or

5m* . Now assume that, for a parameter interval@mL ,mR#
with mL,m* ,mR , in addition to the node, there are als
two other attractors A and B and that the boundary of
basin of attractor A, attractor B, and the node is a frac
basin boundary. We are interested in the typical case wh
before the bifurcation, the saddle lies on the fractal ba
boundary, and thus, at the bifurcation, the merged sad
node orbit is on the basin boundary. In such a case an a
trarily small ball about the saddle node atm5m* contains
pieces of the basins of both A and B. Thus, asm slowly
increases throughm* , it is unclear whether the orbit follow-
ing the node will go to A or to B after the node attractor
destroyed by the bifurcation. In practice, noise or round-
error may lead the orbit to go to one attractor or the oth
and the result can often depend very sensitively on the s
cific value of the slow rate at which the system parame
varies.

We note that the study of orbits swept through an inde
minate saddle-node bifurcation belongs to the theory of
namical bifurcations. Many authors have analyzed orb
swept through other bifurcations, like the period doubli
bifurcation @5#, the pitchfork bifurcation @6,7#, and the
transcritical bifurcation@7#. In all these studies of the bifur
cations listed above, the local structure beforeand after the
bifurcation includes stable invariant manifolds varyin
smoothly with the bifurcation parameter~i.e., a stable fixed
point that exists before or after the bifurcation and who
location varies smoothly with the bifurcation paramete!.
This particular feature of the local bifurcation structure, n
shared by the saddle-node bifurcation, allows for well-pos
locally defined problems of dynamical bifurcations. Th
static saddle-node bifurcation has received much attentio
theory and experiments@8–10#, but so far, no dynamica
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bifurcation problems have been defined for the saddle-n
bifurcation. In this work, we demonstrate that, in certa
common situations, global structure~e.g., an invariant Canto
set or a fractal basin boundary! adds to the local properties o
the saddle-node bifurcation and allows for well-posed pr
lems of dynamical bifurcations.

Situations where a saddle-node bifurcation occurs o
fractal basin boundary have been studied in two-dimensio
Poincare´ maps of damped forced oscillators@4,11,12#. Sev-
eral examples of such systems are known@4,12#, and it
seems that this is a common occurrence in dynamical
tems. In this work, we first focus on saddle-node bifurcatio
that occur for one-parameter families of smooth on
dimensional maps having multiple critical points~a critical
point is a point at which the derivative of the map vanishe!.
Since one-dimensional dynamics is simpler than tw
dimensional dynamics, indeterminate bifurcations can
more simply studied, without the distraction of extra ma
ematical structure. Taking advantage of this, we are abl
efficiently investigate several scaling properties of these
furcations. In particular, we investigate the scaling of~1! the
fractal basin boundary of the static~i.e., unswept! system
near the saddle-node bifurcation~Secs. II B and II C!, ~2! the
dependence of the orbit final destination on the sweeping
~Sec. II D!, ~3! the dependence of the time it takes for
attractor to capture the swept orbit following the bifurcati
on the sweeping rate~Sec. II E!, and ~4! the dependence o
the final attractor capture probability on the noise level~Sec.
II F!. Following our one-dimensional investigations, we e
plain that these results apply to two-dimensional systems.
show, through numerical experiments on the periodica
forced Duffing oscillator, that the scalings we have fou
also apply to higher-dimensional systems~Sec. III!.

For one-dimensional maps, a situation dynamically sim
lar to that in which there is indeterminacy in which attrac
captures the orbit can also occur in cases where there are
rather than three~or more! attractors~Sec. IV!. In particular,
we can have the situation where one attractor persists fo
values of the parameters we consider and the other attra
is a node which is destroyed via a saddle-node bifurcation
the basin boundary separating the basins of the two att
tors. In such a situation, an orbit starting on the node
swept through the saddle-node bifurcation will go to the
maining attractor. It is possible to distinguish different wa
that the orbit initially on the node approaches the remain
attractor. We find that the way in which this attractor is a
proached can be indeterminate.

II. INDETERMINACY IN WHICH ATTRACTOR
IS APPROACHED

We consider the general situation of a one-dimensio
real mapf m(x) depending on a parameterm. We assume the
following: ~1! the map is twice differentiable with respect
x and once differentiable with respect tom ~the derivatives
are continuous!, ~2! f m has at least two attractors sharing
fractal basin boundary for parameter values in the vicinity
m* , and~3! an attracting fixed pointx* of the mapf m(x) is
destroyed by a saddle-node bifurcation as the parametem
06621
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increases through a critical valuem* , and this saddle-node
bifurcation occurs on the common boundary of the basins
the two attractors.

We first recall the saddle-node bifurcation theorem~see,
for example,@8#!. If the map f m(x) satisfies~a! f m

*
(x* )

5x* , ~b! (] f m
*

/]x)(x* )51, ~c! (]2f m
*

/]2x)(x* ).0, and

~d! (] f /]m)(x* ;m* ).0, then the mapf m undergoes a
backward saddle-node bifurcation~i.e., the node attractor is
destroyed atx* asm increases throughm* ). If the inequality
in either ~c! or ~d! is reversed, then the map undergoes
forward saddle-node bifurcation, while if both these i
equalities are reversed, the bifurcation remains backwar
saddle-node bifurcation in a one-dimensional map is a
called a tangent or a fold bifurcation.

A. Model

As an illustration of an indeterminate saddle-node bif
cation in a one-dimensional map, we construct an exampl
the following way. We consider the logistic map for a para
eter value where there is a stable period three orbit. We
note this mapg(x) and its third iterateg[3] (x). The map
g[3] (x) has three stable fixed points. We perturb the m
g[3] (x) by adding a function~which depends on a paramet
m) that will cause a saddle-node bifurcation of one of t
attracting fixed points but not of the other two@see Figs. 1~a!
and 1~b!#. We investigate

f m~x!5g[3]~x!1m sin~3px!,

where g~x!53.832x~12x!. ~1!

Numerical calculations show that the functionf m(x) satisfies
all the conditions of the saddle-node bifurcation theorem
having a backward saddle-node bifurcation atx* '0.159 70
and m* '0.002 79. Figure 2~a! displays how the basins o
the three attracting fixed points of the mapf m change with
variation ofm. For m50 the third iterate of the logistic map

FIG. 1. Construction of the functionf m(x) starting with~a! the
third iterate of the logistic map,g(x)5rx(12x), with r 53.832,
and adding a perturbation~b! m sin(3px) (m55.431023).
3-2
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FIG. 2. ~Color! ~a! Basin structure of the mapf m versus the parameterm on the horizontal axis. The attractor having the blue basin
destroyed atm'2.7931023. ~b! Detail of the region shown as the white rectangle in~a!.
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is unperturbed, and it has three attracting fixed points wh
basins we color coded with blue, green, and red. For ev
value of m, the red regionR@m# is the set of initial condi-
tions attracted to the rightmost stable fixed point which
denoteRm . The green regionG@m# is the set of initial con-
ditions attracted to the middle stable fixed point which
denoteGm . The blue regionB@m# is the set of initial condi-
tions attracted to the leftmost stable fixed point which
denoteBm .

For m,m* , each of these colored sets has infinite
many disjoint intervals and a fractal boundary. Asm in-
creases, the leftmost stable fixed pointBm is destroyed via a
saddle-node bifurcation on the fractal basin boundary.
fact, in this case, form,m* , every boundary point of one
basin is a boundary point for all three basins.~That is, an
arbitrarily smallx interval centered about any point on th
boundary of any one of the basins contains pieces of
other two basins.! The basins are so-called Wada basins@13#.
This phenomenon of a saddle-node bifurcation on the fra
boundary of Wada basins also occurs for the damped fo
oscillators studied in Refs.@11,12#. Alternatively, if we look
at the saddle-node bifurcation asm decreases through th
valuem* , then the basinB@m# of the newly created stabl
fixed point immediately has infinitely many disjoint interva
and its boundary displays fractal structure. According to
terminology of Robertet al. @14#, we may consider this bi-
furcation an example of an ‘‘explosion.’’

B. Dimension of the fractal basin boundary

Figure 3 graphs the computed dimensionD of the fractal
basin boundary versus the parameterm. For m,m* , we
observe thatD appears to be a continuous function ofm.
Parket al. @15# argue that the fractal dimension of the bas
boundary nearm* , for m,m* , scales as

D~m!'D* 2k~m* 2m!1/2, ~2!

with D* the dimension atm5m* (D* is less than the di-
mension of the phase space! andk a positive constant. Figure
06621
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3 shows that the boundary dimensionD experiences a dis
continuous jump at the saddle-node bifurcation whenm
5m* . We believe that this is due to the fact that the ba
B@m# suddenly disappears form.m* .

The existence of a fractal basin boundary has import
practical consequences. In particular, for the purpose of
termining which attractor eventually captures a given orb
the arbitrarily fine-scaled structure of fractal basin boun
aries implies considerable sensitivity to small errors in init
conditions. If we assume that initial points cannot be loca
more precisely than somee.0, then we cannot determin
which basin a point is in, if it is withine of the basin bound-
ary. Such points are callede uncertain. The Lebesgue mea
sure of the set ofe-uncertain points~in a bounded region of
interest! scales likeeD02D, whereD0 is the dimension of the
phase space (D051 for one-dimensional maps! andD is the
box-counting dimension of the basin boundary@1#. For the
case of a fractal basin boundary, (D02D),1. When D0
2D is small, a large decrease ine results in a relatively

FIG. 3. Fractal dimension of the basin boundary versusm. No-
tice the continuous variation form,m* and the discontinuous jump
at m* , the parameter value at which the saddle-node bifurcation
the fractal basin boundary takes place.
3-3
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FIG. 4. ~a! Detail of Fig. 2~b!,
with the horizontal axis changed
from m to (m2m* )21/2 for m
.m* ; The green stripes from
Fig. 2~b! are colored black and the
red stripes are colored white. Th
approximate position of the poin
x* where the saddle-node bifurca
tion takes place is shown.xc indi-
cates the nearest critical point.~b!
Detail of Fig. 3, displaying how
the box dimensionD of the fractal
basin boundary varies with (m
2m* )21/2. The horizontal axes of
~a! and ~b! are identical.
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small decrease ineD02D. This is discussed in Ref.@1# which
defines the uncertainty dimension,Du , as follows. Say we
randomly pick an initial conditionx with uniform probability
density in a state-space regionS. Then we randomly pick
another initial conditiony in S, such thatuy2xu,e. Let
p(e,S) be the probability thatx andy are in different basins
@We can think ofp(e,S) as the probability that an error wil
be made in determining the basin of an initial condition if t
initial condition has uncertainty of sizee.# The uncertainty
dimension of the basin boundaryDu is defined as the limit of
ln p(e,S)/ln(e) ase goes to zero@1#. Thus, the probability of
error scales asp(e,S);eD02Du, where for fractal basin
boundariesD02Du,1. This indicates enhanced sensitivi
to the small uncertainty in initial conditions. For example,
D02Du50.2, then a decrease of the initial condition unc
tainty e by a factor of 10 leads to only a relatively sma
decrease in the final-state uncertaintyp(e,S), since p de-
creases by a factor of about 100.2'1.6. Thus, in practical
terms, it may be essentially impossible to significan
reduce the final-state uncertainty. In Ref.@1# it was conjec-
tured that the box-counting dimension equals the uncerta
dimension for basin boundaries in typical dynamic
systems. In Ref.@17# it is proved that the box-counting
dimension, the uncertainty dimension, and the Hausdorff
mension are all equal for the basin boundaries of one-
two-dimensional systems that are uniformly hyperbolic
their basin boundary.

We now explain some aspects of the character of the
pendence ofD on m ~see Fig. 3!. From Ref.@18# it follows
that the box-counting dimension and the Hausdorff dim
sion coincide for all intervals ofm for which the mapf m is
hyperbolic on the basin boundary and that the dimens
depends continuously on the parameterm in these intervals.
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For m.m* , there are many parameter values for which t
map has a saddle-node bifurcation of a periodic orbit on
fractal basin boundary. At such parameter values, which
refer to as saddle-node bifurcation parameter values, the
mension is expected to be discontinuous~as it is at the
saddle-node bifurcation of the fixed point,m5m* ; see Fig.
3!. In fact, there exist sequences of saddle-node bifurca
parameter values converging tom* @16#. Furthermore, for
each parameter valuem.m* for which the map undergoes
saddle-node bifurcation, there exists a sequence of sad
node bifurcation parameter values converging to that par
eter value. The basins of attraction of the periodic orb
created by saddle-node bifurcations of high period exist o
for very small intervals of the parameterm. We did not en-
counter them numerically by iterating initial conditions for
discrete set of values of the parameterm, as we did for the
basin of our fixed-point attractor.

C. Scaling of the fractal basin boundary

Just pastm* , the remaining green and red basins disp
an alternating stripe structure@see Fig. 2~b!#. The red and
green stripes are interlaced in a fractal structure. As we
proach the bifurcation point, the interlacing becomes fin
and finer scaled, with the scale approaching zero asm ap-
proachesm* . Similar fine-scale structure is present in th
neighborhood of all preiterates ofx* . If one changes the
horizontal axis of Figs. 2~a! and 2~b! from m to (m
2m* )21/2, then the complex alternating stripe structure a
pears asymptotically periodic@see Fig. 4~a!#. @Thus, with
identical horizontal scale, the dimension plot in Fig. 4~b!
appears asymptotically periodic, as well.# We now explain
3-4
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why this is so. We restrict our discussion to a small neig
borhood ofx* . Consider the second-order expansion off m
in the vicinity of x* andm* :

f̂ m̂~ x̂!5m̂1 x̂1ax̂2, whereH x̂5x2x* ,

m̂5m2m* ,
~3!

anda'89.4315. The trajectories off̂ m̂ in the neighborhood
of x̂50, for m̂ close to zero, are good approximations
trajectories off m in the neighborhood ofx5x* , for m close
to m* . Assume that we start with a certain initial conditio
for f̂ m̂ , x̂05 x̂s , and we ask the following question: What a
all the positive values of the parameterm̂ such that a trajec-
tory passes through a fixed positionx̂f.0 at some iteraten?
For any givenxf which is not on the fractal basin boundar
there exists a range ofm such that iterates ofxf under f m
evolve to the same final attractor, for all values ofm in that
range. In particular, onceax̂2 appreciably exceedsm̂, the
subsequent evolution is approximately independent ofm̂.
Thus, we can choosex̂f@Am̂/a, but still small enough so
that it lies in the region of validity of the canonical form~3!.
There exists a range of suchx̂f values satisfying these re
quirements provided thatum̂u is small enough.

Since consecutive iterates off̂ m̂ in the neighborhood of
x̂50 for m̂ close to zero differ only slightly, we approximat
the one-dimensional map

x̂n115 f̂ m̂~ x̂n!5m̂1 x̂n1ax̂n
2 ~4!

by the differential equation@9#

dx̂

dn
5m̂1ax̂2, ~5!

where in Eq.~5! n is considered as a continuous, rather th
a discrete, variable. Integrating Eq.~5! from x̂s to x̂f yields

nAam̂5arctanSAa

m̂
x̂f D 2arctanSAa

m̂
x̂sD . ~6!

Close to the saddle-node bifurcation~i.e., 0,m̂!1 andx̂s, f

close to zero!, f̂ m̂ is a good approximation tof m . For
ux̂s, f uA(a/m̂)@1, Eq. ~6! becomes

nAam̂'p. ~7!

The values ofm̂n
21/2 satisfying Eq.~7! increase withn in

steps ofAa/p. For our example we havea'89.4315; thus,
Aa/p'3.010. Counting many periods like those in Fig. 4
the region ofxc , the closest critical point tox* @see Fig.
4~a!#, we find that the period of the stripe structure is 3.01
which is in good agreement with our theoretical value.

In order to investigate the structure of the fractal ba
boundary in the vicinity of the saddle-node bifurcation~i.e.,
x̂s close tox̂* 50), we consider Eq.~6! in the case where we
demand onlyux̂f uA(a/m̂)@1. Thus, Eq.~6! becomes
06621
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nAam̂'
p

2
2arctanSAa

m̂
x̂sD . ~8!

Let m̂n( x̂s) denote the solution of Eq.~8! for m̂. Equation~8!
implies the behavior ofm̂n

21/2( x̂s) as function ofx̂s andn as
sketched in Fig. 5. For a fixedn, m̂n

21/2 has a horizontal
asymptote at the valuenAa/p as x̂s→2` and a vertical
asymptote to infinity atx̂s51/(an). For x̂s,0, we have an
infinite number of values of the parameterm̂, for which an
orbit of f̂ m̂ starting atx̂s passes through the same positionx̂f ,
after some number of iterations. Forx̂s50 ~i.e.,xs5x* ), we
also have an infinite number ofm̂n

21/2(0), but with constant
step 2Aa/p rather thanAa/p ~see the intersections marke
with black dots in the Fig. 5!. This is hard to verify from
numerics, since (]m̂n

21/2/] x̂s)(0)5a3/2(2n/p)2 increases
with n2, and the stripes become very tilted in the neighb
hood of x̂s5 x̂* 50. @See Fig. 4~a!, where the approximate
positions ofxc andx* on the vertical axis are indicated.# For
x̂s.0, m̂n

21/2 has only a limited number of values wit
nmax,1/(ax̂0).

D. Sweeping through an indeterminate
saddle-node bifurcation

In order to understand the consequences of a saddle-
bifurcation on a fractal basin boundary for systems exp
encing slow drift, we imagine the following experiment. W
start with the dynamical systemf m at parameterms,m* ,
with x0 on the attractor to be destroyed atm5m* by a
saddle-node bifurcation~i.e., Bm). Then, as we iterate, we
slowly changem by a small constant amountdm per iterate,
thus increasingm from ms to m f.m* :

xn115 f mn
~xn!,

mn5ms1ndm. ~9!

When m>m f we stop sweeping the parameterm, and by
iterating further, we determine to which of the remainin
attractors off m f

the orbit goes. Numerically, we observe tha

FIG. 5. Qualitative graphs of the solution of Eq.~8!, m̂n
21/2( x̂0),

for three consecutive values ofn. Note the horizontal asymptote
@m̂21/25(n21)a1/2p, na1/2p, and (n11)a1/2p], the vertical as-
ymptotes „x̂s5@a(n21)#21, (an)21, and @a(n11)#21

…, both
shown as dashed lines, and the intersections of the solid curves
x̂050 which are marked with black dots.
3-5
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FIG. 6. ~a! Final attracting state of swept orbits versusdm. We have chosenms5m̂s1m* 50 andm f54.531023. The attractorRm f
is

represented by 1 and the attractorGm f
is represented by 0.~b! Detail of ~a! with the horizontal scale changed fromdm to 1/dm. The structure

of white and black bands becomes asymptotically periodic.~c! Final state of orbits for the systemf̂ m̂ versus 1/dm. The final state of an orbit
is defined to be 0 if there existsn such that 100, x̂n,250 and is defined to be 1, otherwise. We have chosenm̂s52m* , so that~b!,~c! have
the same asymptotic periodicity.
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if ( m f2m* ) is not too small, then by the timem f is reached,
the orbit is close to the attractor off m f

to which it goes.

@From our subsequent analysis, ‘‘not too smallums, f2m* u ’’
translates into choices ofdm that satisfy (dm)2/3!ums, f

2m* u.# We repeat this for different values ofdm and we
graph the final attractor position for the orbit versusdm @see
Fig. 6~a!#. For convenience in the graphical representation
Figs. 6~a! and 6~b!, we have represented the attractor of t
green regionG@m#, denotedGm f

, as a 0, and the attractor o

the red regionR@m#, denotedRm f
, as a 1. In Fig. 6~a! we use

25 000 points having vertical coordinate of either 0 or
which we connect with straight lines. In an interval ofdm for
which the system reaches the same final attractor~either 0 or
1!, the lines connecting the points are horizontal. Such in
vals appear as white bands in Fig. 6 if they are wider than
width of the plotted lines connecting 0’s and 1’s. For e
ample, in Fig. 6~a!, the white band centered atdm50.8
31023 has at the bottom a thick horizontal line, which ind
cates that for the whole of that interval, the orbit reaches
attractorGm f

which we represented by 0. Adjacent interva
of width less than the plotted lines appear as black ban
Within such black bands, an uncertainty indm of size equal
to the width of the plotted line makes the attractor that
orbit goes to indeterminate. Figure 6~a! shows that the
06621
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widths of the white bands decrease asdm decreases, such
that, for smalldm, we see only black.

If ( m f2m* ) is large enough@i.e., (dm)2/3!um f2m* u],
numerics and our subsequent analysis show that Fig.
independent ofm f . This fact can be understood as follow
Oncem5m f , the orbit typically lands in the green or the re
basin of attraction and goes to the corresponding attrac
Due to sweeping, it is possible for the orbit to switch fro
being in one basin of attraction of thetime-independentmap
f m to the other, since the basin boundary betweenG@m# and
R@m# changes withm. However, the sweeping ofm is slow
~i.e., dm is small!, and once (m2m* ) is large enough, the
orbit is far enough from the fractal basin boundary, and
fractal basin boundary changes too little to switch the or
betweenG@m# andR@m#.

We also find numerically that Figs. 6~a! and 6~b! are in-
dependent of the initial conditionx0, provided that it is in the
blue basinB@ms#, sufficiently far from the fractal basin
boundary, and thatums2m* u is not too small@i.e., (dm)2/3

!ums2m* u].
If one changes the horizontal scale of Fig. 6~a! from dm to

1/dm @see Fig. 6~b!#, the complex band structure appears a
ymptotically periodic. Furthermore, we find that the peri
in ~1/dm! of the structure in Fig. 6~b! asymptotically ap-
proaches21/(ms2m* ) asdm becomes small.
3-6
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In order to explain this result, we again consider the m
f̂ m̂ , the local approximation off m in the region of the saddle
node bifurcation. Equations~9! can be approximated by

x̂n115 f̂ m̂n
~ x̂n!5m̂n1 x̂n1ax̂n

2 ,

m̂n5m̂s1ndm. ~10!

We perform the following numerical experiment. We co
sider orbits of our approximate two-dimensional map giv
by Eq. ~10! starting atx̂s52A2m̂s /a. We define a final-
state function of an orbit swept with parameterdm in the
following way. It is 0 if the orbit has at least one iterate in
specified fixed interval far from the saddle-node bifurcat
and is 1 otherwise. In particular, we take the final state o
swept orbit to be 0 if there existsn such that 100, x̂n,250
and to be 1 otherwise. Figure 6~c! graphs the correspondin
numerical results. Similar to Fig. 6~b!, we observe periodic
behavior in 1/dm with period21/m̂s . In contrast to Fig. 6~b!
where the white band structure seems fractal, the struc
within each period in Fig. 6~c! consists of only one interva
where the final state is 0 and one interval where the fi
state is 1. This is because 100, x̂,250 is a single interval,
while the green basin@denoted 0 in Fig. 6~b!# has an infinite
number of disjoint intervals and a fractal boundary~see
Fig. 2!.

With the similarity between Figs. 6~b! and 6~c! as a guide,
we are now in a position to give a theoretical analysis
plaining the observed periodicity in 1/dm. In particular, we
now know that this can be explained using the canonical m
~10! and that the periodicity result is thus universal@i.e.,
independent of the details of our particular example, Eq.~1!#.
For slow sweeping~i.e., dm small!, consecutive iterates o
Eqs. ~10! in the vicinity of x̂50 and m̂50 differ only
slightly, and we further approximate the system by the f
lowing Ricatti differential equation:

dx̂

dn
5m̂s1ndm1ax̂2. ~11!

The solution of Eq.~11! can be expressed in terms of th
Airy functions Ai and Bi and their derivatives, denoted b
Ai 8 and Bi8:

x̂~n!5
hAi 8~j!1Bi8~j!

hAi ~j!1Bi~j! S dm

a2 D 1/3

, ~12!

where

j~n!52a1/3
m̂s1ndm

dm2/3
~13!

andh is a constant to be determined from the initial con
tion. We are only interested in the case of slow sweep
dm!1, andx̂(0)[ x̂s52A2m̂s /a ~which is the stable fixed
point of f̂ m̂ destroyed by the saddle-node bifurcation atm̂
50). In particular, we will consider the case wherem̂s,0
and um̂su@dm2/3 @i.e., uj(0)u@1]. Using x̂(0)52A2m̂s /a
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to solve for h yields h;O@j(0)e2j(0)#@1. For positive
large values ofj(n) ~i.e., for n small enough!, using the
corresponding asymptotic expansions of the Airy functio
@19#, the lowest order indm approximation to Eq.~12! is

x̂~n!'2A2
m̂s1ndm

a
, ~14!

with the correction term of higher order indm being nega-
tive. Thus, for n sufficiently smaller than2m̂s /dm, the
swept orbit lags closely behind the fixed point forf̂ m̂ with m̂
constant. Forj<0, we use the fact thath is large to approxi-
mate Eq.~12! as

x̂~n!'
Ai 8~j!

Ai ~j! S dm

a2 D 1/3

. ~15!

Note that

x̂~2m̂s /dm!'
Ai 8~0!

Ai ~0! S dm

a2 D 1/3

5~20.7290 . . . !S dm

a2 D 1/3

~16!

gives the lag of the swept orbit relative to the fixed-po
attractor evaluated at the saddle-node bifurcation. Equa
~15! does not apply forn.nmax, wherenmax is the value of
n for which j(nmax)5 j̃, the largest root of Ai(j̃)50 ~i.e.,
j̃522.3381 . . . ). At n5nmax, the normal-form approxima-
tion predicts that the orbit diverges to1`. Thus, forn near
nmax, the normal-form approximation of the dynamical sy
tem ceases to be valid. Note, however, that Eq.~15! can be
valid even forj(n) close toj(nmax). This is possible be-
causedm is small. In particular, we can consider times up
the timen8 wheren8 is determined byj8[j(n8)5 j̃1dj
~dj.0 is small! provided ux̂(n8)u!1 so that the
normal form applies. That is, we require@Ai 8(j8)/
Ai( j8)#(dm/a2)1/3!1, which can be satisfied even
@Ai 8~j8!/Ai ~j8!# is large. Furthermore, we will take the sma
quantity dj to be not too small@i.e., dj/(adm)1/3@1], so
that (nmax2n8)@1. We then consider Eq.~15! in the range
2(m̂s /dm)<n,n8, where the normal form is still valid.

We use Eq.~15! for answering the following question
What are all the values of the parameterdm ~dm small!
for which an orbit passes exactly through the sa
position x̂f.0 at some iteratenf? All such orbits would
further evolve to the same final attractor, independent
dm, provided ax̂f

2@m̂s1nfdm—i.e., x̂f is large enough
that m̂ f5m̂s1nf dm does not much influence the orb
after x̂ reaches x̂f . @Denote j(nf) as j(nf)[j f .]
Using Eq. ~15! we can estimate when thi
occurs, ax̂f

25@Ai 8(j f)/Ai( j f)#2(dm2/a)1/3@(m̂s1nf dm)
or @Ai 8(j f)/Ai( j f)#2@j f . This inequality is satisfied when
j f gets nearj̃, which is the largest zero of Ai~i.e., j f5 j̃
1dj, wheredj is a small positive quantity!. We now rewrite
Eq. ~15! in the following way:
3-7
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1

dm
52

nf

m̂s2F ~dm!2

a
G1/3

KF S a2

dm
D 1/3

x̂f G , ~17!

representing a transcedental equation indm wherem̂s and x̂f
are fixed,nf is a large positive integer@i.e., nf21 is the
integer part of (m̂ f2m̂s)/dm], andK(z) is the inverse func-
tion of Ai8(j)/Ai( j) in the neighborhood of z

5(a2/dm)1/3x̂f@1. Thus uK@(a2/dm)1/3x̂f #u&uK(`)u5u j̃u.
The difference @1/dm(xf ,nf11)21/dm(xf ,nf)#, where
dm(xf ,nf) is the solution of Eq.~17!, yields the limit period
of the attracting state versus 1/dm graph ~see Fig. 6!. We
denote this limit period byD(1/dm). For smalldm, the term
involving K@(a2/dm)1/3x̂f # in Eq. ~17! can be neglected, an
we getD(1/dm)52m̂s

215(2ms1m* )21. Figure 7 graphs
numerical results of@D(1/dm)#21 versusms for our map
example given by Eq.~9!. The fit line is @D(1/dm)#215
20.9986ms10.0028, which agrees well with the predictio
of the above analysis and our numerical value form at the
bifurcation,m* '0.002 79.

An alternate point of view on this scaling property is
follows. Form̂,0 ~i.e.,m,m* ) and slow sweeping~i.e.,dm
small!, the orbit closely follows the stable fixed-point attra

FIG. 7. Numerical results for the inverse of the limit period
1/dm versus ms . The fit line is @D(1/dm)#21520.9986ms

10.0028 and indicates good agreement with the theoretical ex
nation presented in text.
06621
tor of f̂ m̂ , until m̂>0, and the saddle-node bifurcation tak
place. However, due to the discreteness ofn, the first non-
negative value ofm̂ depends onm̂s anddm ~see Fig. 8!. Now
consider two values ofdm: onedmm satisfyingm̂s1mdmm
50 and anotherdmm11 satisfying m̂s1(m11)dmm1150.
Becausedmm and dmm11 are very close~for large m) and
both leadm̂(n) to pass throughm̂5m̂* 50 ~one at timen
5m and the other at timen5m11), it is reasonable to
assume that their orbits form̂s /dm,n,n8 are similar~ex-
cept for a time shiftn→n11); i.e., they go to the same
attractor. Thus, the period of 1/dm is approximately
D(1/dm)51/dmm1121/dmm52m̂s

21 .
We now consider the intervals of 1/dm between the cen-

ters of consecutive wide white bands in Fig. 6~b!. Figure 9
graphs the calculated fractal dimensionD8 of the boundary
between white bands in these consecutive intervals ve
their center value of 1/dm. From Fig. 9, we see that as 1/dm
increases, the graph of the fractal dimensionD8 does not
converge to a definite value, but displays further structu
Nevertheless, numerics show that as 1/dm becomes large
~i.e., in the range of 6.53105), D8 varies around the value
0.952. This is consistent with the numerics presented in F
4~b! which graphs the dimension of the fractal basin boun
ary for the time-independent mapf m at fixed values of the
parameterm wherem.m* . Thus, for large 1/dm, D8 pro-
vides an estimate of the dimension of the fractal ba
boundary in the absence of sweeping atm.m .

la-

FIG. 8. Qualitative graphs off̂ m̂( x̂) in the vicinity of the saddle-
node bifurcation at different values of the parameterm̂. The black

dots indicate the stable fixed points off̂ m̂ for different values ofm̂.
*

l

rs
s

FIG. 9. The calculated fracta
dimensionD8 of the structure in
the intervals between the cente
of consecutive wide white band
in Fig. 6~b! versus their center
value of 1/dm.
3-8
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SCALING PROPERTIES OF SADDLE-NODE . . . PHYSICAL REVIEW E 68, 066213 ~2003!
We now discuss a possible experimental application
our analysis. The conceptually most straightforward meth
of measuring a fractal basin boundary would be to rep
many experiments each with precisely chosen initial con
tions. By determining the final attractor corresponding
each initial condition, basins of attraction could conceiva
be mapped out@3#. However, it is commonly the case th
accurate control of initial conditions is not feasible for e
periments. Thus, the application of this direct method is li
ited, and as a consequence, fractal basin boundaries
received little experimental study, in spite of their fundame
tal importance. If a saddle-node bifurcation occurs on
fractal basin boundary, an experiment can be arranged to
advantage of this. In this case, the purpose of the experim
would be to measure the dimensionD8 as an estimate of the
fractal dimension of the basin boundaryD. The measure-
ments would determine the final attractor of orbits starting
the attractor to be destroyed by the saddle-node bifurca
and swept through the saddle-node bifurcation at differ
velocities ~i.e., the experimental data corresponding to
numerics in Fig. 6!. This does not require precise control
the initial conditions of the orbits. It is sufficient for th
initial condition to be in the basin of the attractor to be d
stroyed by the saddle-node bifurcation; after enough tim
the orbit will be as close to the attractor as the noise le
allows. Then, the orbit may be swept through the sadd
node bifurcation. The final states of the orbits are attract
in their final states, orbits are robust to noise and to meas
ment perturbations. The only parameters which require
orous control are the sweeping velocity~i.e., dm! and the
initial value of the parameter to be swept~i.e., ms); precise
knowledge of the parameter value where the saddle-nod
furcation takes place~i.e., m* ) is not needed.@It is also re-
quired that the noise level be sufficiently low~see Sec. II F!.#

E. Capture time

A question of interest is how much time it takes for
swept orbit to reach the final attracting state. Namely, we
how many iterations withm.m* are needed for the orbit to
reach a neighborhood of the attractor having the green ba
Due to slow sweeping, the location of the attractor chan

FIG. 10. Capture time by the fixed-point attractorGm f
versus

1/dm. We have chosenms50. The range of 1/dm is approximately
one period of the graph in Fig. 6~b!. No points are plotted for value
of dm for which the orbit reaches the fixed-point attractorRm f

.
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slightly on every iterate. Ifxm is a fixed-point attractor off m
~with m constant!, then a small changedm in the parameterm
yields a change in the position of the fixed-point attracto

~xm1dm2xm![dx5dm
~] f /]m! ~xm ;m!

12~] f m/]x! ~xm!
.

We consider the swept orbit to have reached its final attra
if consecutive iterates differ by aboutdx ~which is propor-
tional to dm!. For numerical purposes, we consider that t
orbit has reached its final state ifuxn112xnu,10dm. In our
numerical experiments, this condition is satisfied by ev
orbit beforem reaches its final valuem f . We refer to the
number of iterations withm.m* needed to reach the fina
state as thecapture timeof the corresponding orbit. Figure
10 plots the capture time by the attractorGm f

~having the
green basin in Fig. 2! versus 1/dm for a range corresponding
to one period of the structure in Fig. 6~b!. No points are
plotted for values ofdm for which the orbit reaches the a
tractorRm f

. The capture time graph has fractal features, si
for many values ofdm the orbit gets close to the fracta
boundary betweenR@m# andG@m#. Using the fact that the
final destination of the orbit versus 1/dm is asymptotically
periodic@see Fig. 6~b!#, we can provide a further descriptio
of the capture time graph. We consider the series of the l
est intervals of 1/dm for which the orbit reaches the attracto
Gm f

@see Fig. 6~b!; we refer to the wide white band aroun
1/dm52400 and the similar ones which are~asymptotically!
separated by an integer number of periods#. Orbits swept
with dm at the centers of these intervals spend only a sm
number of iterations close to the common fractal boundary
R@m# andG@m#. Thus, the capture time of such similar o
bits does not depend on the structure of the fractal ba
boundary. We use Eq.~15! as an approximate description o
these orbits. A swept orbit reaches its final attracting state
x̂(n) becomes large. Then, the orbit is rapidly trapped in
neighborhood of one of the swept attractors off m . Thus, we
equate the argument of the Airy function in the denomina
to its first root @see Eq.~15!#, solve for n, and subtract

FIG. 11. Capture time by the middle fixed-point attractor off m

versusdm (ms50). The best fitting line~not shown! has slope
20.31, in agreement with the theory.
3-9
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BREBAN, NUSSE, AND OTT PHYSICAL REVIEW E68, 066213 ~2003!
2m̂s /dm ~the time for m̂ to reach the bifurcation value!.
This yields the following approximate formula for the ca
ture time:

nC'u j̃u~adm!21/3, ~18!

where j̃522.3381 . . . is the largest root of the Airy func-
tion Ai. Thus, we predict that for smalldm, a log-log plot of
the capture time of the selected orbits versusdm is a straight
line with slope 21/3. Figure 11 shows the correspondin
numerical results. The best fitting line~not shown! has slope
20.31, in agreement with our prediction@20#.

F. Sweeping through an indeterminate saddle-node bifurcation
in the presence of noise

We now consider the addition of noise. Thus, we chan
our swept dynamical system to

xn115 f mn
~xn!1Aen ,

mn5ms1ndm, ~19!

whereen is random with uniform probability density in th
interval @21,1# andA is a parameter which we call the nois
amplitude. See Fig. 6~a! which shows the numerical resul
of the final destination of the orbits versusdm in the case
A50. The graph exhibits fractal features of structure at
bitrarily small scales. The addition of small noise is expec
to alter this structure, switching the final destination of
bits. In this case, it is appropriate to study the probability
orbits reaching one of the final destinations. For everyA, we
compute the final attractor of a large number of orbits hav
identical initial condition and parameters, but with differe
realizations of the noise. We estimate the probability that
orbit reaches a certain attractor by the fraction of such or
that have reached the specified attractor in our numer
simulation. Figure 12 graphs the probability that an or
reaches the attractorGm f

versus the noise amplitudeA. We
present five graphs corresponding to five different values
dm equally spaced in a range of 1027 centered at 1025 ~i.e.,
dm51025, 102562.531028, and 10256531028). We
notice that the probability graphs have different shapes, b
common horizontal asymptote in the limit of large noise. T
value of the horizontal asymptote, approximately equal
0.5, is related to the relative measure of the correspond
basin.
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As in the previous subsection, we take advantage of
asymptotically periodic structure of the noiseless final de
nation graph versus 1/dm @see Fig. 6~b!#. We consider centers
of the largest intervals of 1/dm for which an orbit reaches the
middle attractor in the absence of noise. We chose five s
values ofdm, spread over two decades, where the ratio
consecutive values is approximately 3. Figure 13~a! graphs
the probability that an orbit reaches the middle fixed-po
attractor versus the noise amplitudeA for the five selected
values ofdm. We notice that all the curves have qualitative
similar shape. For a range from zero to smallA, the prob-
ability is 1, and asA increases, the probability decreases to
horizontal asymptote. The rightmost curve in the fam
corresponds to the largest value ofdm (dm'3.445 974
31025), and the leftmost curve corresponds to the smal
value of dm (dm'4.243 52231027). Figure 13~b! shows
the same family of curves as in Fig. 13~a!, but with the
horizontal scale changed fromA to A/(dm)5/6. All data col-
lapse to a single curve, indicating that the probability tha
swept orbit reaches the attractorGm f

depends only on the

reduced variableA/(dm)5/6. Later, we provide a theoretica
argument for this scaling.

In order to gain some understanding of this result,
follow the idea of Sec. II D and use the canonical formf̂ m̂ to
propose a simplified setup of our problem. We modify E
~10! by the addition of a noise termAen in the right-hand
side of the first equation of Eqs.~10!. We are interested in the
probability that a swept orbit has at least one iteratex̂n in a

FIG. 12. Probability that one orbit reaches the middle fixe
point attractor off m versus the noise amplitudeA, for five different
values ofdm (1025, 102562.531028 and 10256531028). We
have chosenms50.
e

s

FIG. 13. Probability that an orbit reaches th
middle fixed-point attractor off m , for five se-
lected values ofdm spread over two decades:~a!
versus the noise amplitudeA and ~b! versus
A/(dm)5/6. We have chosenms50. From right to
left, the dm values corresponding to the curve
are approximately 3.445 97431025, 1.147 767
31025, 3.820 74431026, 1.273 16031026, and
4.243 52231027.
3-10
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FIG. 14. Probability that an orbit off̂ m̂ reaches a fixed interval far from the saddle-node bifurcation~i.e., @100, 250#!, for five values
of dm spread over two decades:~a! versus the noise amplitudeA, and~b! versusA/(dm)5/6. We have chosenms50. From right to left, the
dm values corresponding to the curves are approximately 3.451 54031025, 1.149 16231025, 3.829 76931026, 1.276 06131026, and
4.253 01831027.
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specified fixed interval far from the vicinity of the saddl
node bifurcation. More precisely, we analyze how this pro
ability changes versusA anddm. Depending on the choice o
interval and the choice ofdm, the graph of the probability
versusA ~not shown! has various shapes. For numerical p
poses, we choose our fixed interval to be the same as th
Sec. II D, 100, x̂,250. We then select values ofdm for
which a noiseless swept orbit, starting atx̂s52A2m̂s /a,
reaches exactly the center of our fixed interval. The inve
of these values ofdm are centers of intervals where the fin
state of the swept orbits is 0@see Fig. 6~c!#. We consider five
such values ofdm, where the ratio of consecutive values
approximately 3. Figure 14~a! shows the probability that a
swept orbit has an iterate in our fixed interval versus
noise amplitude for the selected values ofdm. Figure 14~a!
shares the qualitative characteristics of Fig. 13~a!, with the
only noticeable difference that the value of the horizon
asymptote is now approximately 0.1. Figure 14~b! shows the
same family of curves as in Fig. 14~a!, where the horizonta
scale has been changed fromA to A/(dm)5/6. As for Fig.
12~b!, this achieves good collapse of the family of curves

We now present a theoretical argument for why the pr
ability of reaching an attractor depends ondm and A only
through the scaled variableA/(dm)5/6 when dm and A are
small. From our results in Fig. 14, we know that the scal
we wish to demonstrate should be obtainable by use of
canonical formf̂ m̂ . Accordingly, we again use the differen
tial equation approximation~11!, but with a noise term
added,

dx̂

dn
5ndm1ax̂21Aê~n!, ~20!

whereê(n) is white noise,

^ê~n!&50, ^ê~n1n8!ê~n!&5d~n8!,

and we have redefined the origin of the time variablen so
that the parameterm̂ sweeps through zero atn50 ~i.e., we
replacedn by n2um̂su/dm). Because we are only concerne
06621
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with scaling and not with an exact solution of Eq.~20!, a
fairly crude analysis will be sufficient.

First we consider a solution of Eq.~20! with the noise
term omitted and the initial condition@see Eq.~16!#

x̂~0!5~20.7290 . . . !~dm/a2!1/3.

We define a characteristic point of the orbit,x̂nl(nnl), where
ax̂nl

2 'nnl dm. For n,nnl , ndm<dx̂/dn,2n dm, and we
can approximate the noiseless orbit as

x̂~n!' x̂~0!1a~n!~n2 dm!, ~21!

where a(n) is a slowly varying function ofn of order 1
@1/2<a(n),1 for n,nnl]. Settingax̂2'ndm, we find that
nnl is given by

nnl;~adm!21/3, ~22!

corresponding to@cf. Eq. ~21!#

x̂nl;~dm/a2!1/3.

For n.nnl @i.e., x̂(n). x̂nl], Eq. ~20! can be approximated a
dx̂/dn'ax̂2. Starting atx̂(n); x̂nl , integration of this equa-
tion leads to explosive growth ofx̂ to infinity in a time of
order (adm)21/3, which is of the same order asnnl . Thus,
the relevant time scale is (adm)21/3 @this agrees with Eq.
~18! in Sec. II E#.

Now consider the action of noise. Forn,nnl , we neglect
the nonlinear termax̂2, so that Eq.~20! becomesdx̂/dn
5ndm1Aê(n). The solution of this equation is the linea
superposition of the solutions ofdx̂a /dn5n dm and
dx̂b /dn5Aê(n), or x̂(n)5 x̂a(n)1 x̂b(n); x̂a(n) is given by
x̂a(n)5 x̂(0)1n2dm/2, and x̂b(n) is a random walk. Thus
for n,nnl , there is diffusive spreading of the probabilit
density ofx̂:

Ddiff~n![A^x̂b
2~n!&;n1/2A. ~23!

This diffusive spreading can blur out the structure in Fig.
How large does the noise amplitudeA have to be to do this?
We can estimateA by noting that the periodic structure i
3-11
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FIG. 15. Final attracting state of swept orbits of the Duffing oscillator versus 1/dm. The structure of white and black bands becom
asymptotically periodic. We have chosenms50.253 andm f50.22. The attractor in the potential well forx.0 is represented as a 1, and th
attractor in the potential well forx,0 is represented as a 0.
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Figs. 6~b! and 6~c! results from orbits that take differen
integer times to reachx̂; x̂nl . Thus, forn'nnl we define a
scaleDnl in x̂ corresponding to the periodicity in 1/dm by @cf.
Eq. ~21!#

x̂nl6Dnl' x̂~0!1~nnl61!2 dm,

which yields

Dnl;nnl dm. ~24!

If by the timen'nnl the diffusive spread of the probabilit
density ofx̂ becomes as large asDnl , then the noise starts t
wash out the periodic variations with 1/dm. SettingDdiff(nnl)
from Eq. ~23! to be of the order ofDnl from Eq. ~24!, we
obtainnnl

1/2A;nnl dm, which with Eq.~22! yields

A;~dm!5/6. ~25!

Thus, we expect a collapse of the two-parameter (A,dm)
data in Fig. 14~a! by means of a rescaling ofA by dm raised
to an exponent 5/6@i.e., A/(dm)5/6].

III. SCALING OF INDETERMINATE SADDLE-NODE
BIFURCATIONS FOR A PERIODICALLY FORCED

SECOND-ORDER ORDINARY
DIFFERENTIAL EQUATION

In this section we demonstrate the scaling properties
sweeping through an indeterminate saddle-node bifurca
in the case of the periodically forced Duffing oscillator@12#:

ẍ20.15ẋ2x1x35m cost. ~26!
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The unforced Duffing system~i.e.,m50! is an example of an
oscillator in a double-well potential. It has two coexistin
fixed-point attractors corresponding to the two minima of t
potential energy. For smallm, the forced Duffing oscillator
has two attracting periodic orbits with the period of the for
ing ~i.e., 2p!, one in each well of the potential. Atm5m*
'0.2446, a new attracting periodic orbit of period 6p arises
through a saddle-node bifurcation. In Ref.@21#, it is argued
numerically that for a certain range ofm.m* the basin of
attraction of the 6p periodic orbit and the basins of attractio
of the 2p periodic orbits have the Wada property. Thus, asm
decreases through the critical valuem* , the period-6p at-
tractor is destroyed via a saddle-node bifurcation on the fr
tal boundary of the basins of the other two attractors. Thi
an example of an indeterminate saddle-node bifurcation
the Duffing system which we study by considering the tw
dimensional map in the (ẋ,x) plane resulting from a Poin
carésection at constant phase of the forcing signal. We c
sider orbits starting in the vicinity of the period-3 fixed-poi
attractor, and as we integrate the Duffing system, we
creasem from ms.m* to m f,m* at a small rate ofdm per
one period of the forcing signal. Asm approachesm* ~with
m.m* ), the period-3 fixed-point attractor of the unswe
Duffing system approaches its basin boundary, and
slowly swept orbit closely follows its location. Form2m*
,0 small, the orbit will approximately follow the one
dimensional unstable manifold of them5m* period-3
saddle-node pair. Thus, we can describe the swee
through the indeterminate bifurcation of the Duffing oscill
tor by the theory we developed for one-dimensional discr
maps. Figure 15 shows the final destination graph of a sw
orbit initially situated in the vicinity of the period-3 fixed
point of the Poincare´ map. The final attracting state is repr
sented as a 1 ifsituated in the potential well wherex.0 and
t-

-

FIG. 16. Probability the Duff-
ing oscillator reaches the attrac
ing periodic orbit in the potential
well at x.0 for three values of
dm spread over one decade:~a!
versus the noise amplitudeA and
~b! versus A/(dm)5/6. We have
chosenms50.253. From right to
left, the dm values corresponding
to the curves are approximate
ly 4.628 71631025, 1.461 574
31025, and 4.621 73731026.
3-12
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FIG. 17. ~a! Graph of f m(x)
versusx at the bifurcation param-
eter. ~b! Basin structure of map
f m(x) versus the parameterm. The
basin of attraction of the stable
fixed point created by the saddle
node bifurcation is black while the
basin of attraction of minus infin-
ity is left white.
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is represented as a 0 if situated in the potential well wher
x,0. As expected, the structure in Fig. 15 appears asy
totically periodic if graphed versus 1/dm. In addition to
slowly sweeping the Duffing system, consider an addit
noise termAe(t) on the right-hand side of Eq.~26!, where
on every time stepe(t) is chosen randomly in@21,1# and the
time step used isDt52p/500. Figure 16~a! shows the de-
pendence of the probability of approaching the attractor r
resented as a 1 versus the noise amplitudeA for three spe-
cially selected values ofdm ~centers of white bands in th
structure of Fig. 15 where the swept orbit reaches the attr
ing state represented by 1! spread over one decade. Figu
16~b! shows collapse of the data in Fig. 16~a! to a single
curve when the noise amplitudeA is rescaled by (dm)5/6, as
predicted by our previous one-dimensional analysis~Sec.
II F!. Thus, we believe that the scaling properties of the
determinate saddle-node bifurcation we found in o
dimensional discrete maps are also shared by hig
dimensional flows.
06621
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IV. INDETERMINACY IN HOW AN ATTRACTOR
IS APPROACHED

In this section we consider the case of a one-dimensio
map f m having two attractors A and B, one of which~i.e., A!
exists for allmP@ms ,m f #. The other~i.e., B! is a node which
is destroyed by a saddle-node bifurcation on the bound
between the basins of A and B, asm increases throughm*
(m* P@ms ,m f #). When an orbit is initially on B andm is
slowly increased throughm* , the orbit will always go to A
~which is the only attractor form.m* ). However, it is pos-
sible to distinguish between two~or more! different ways of
approaching A.@In particular, we are interested in ways o
approach that can be distinguished in a coordinate-free~i.e.,
invariant! manner.# As we show in this section, the way i
which A is approached can be indeterminate. In this case,
indeterminacy is connected with the existence of an invar
nonattracting Cantor set~a chaotic repeller! embedded in the
basin of A form.m .
*

tted
and have
FIG. 18. ~Color! ~a! Basin structure off m versusm. We split the basin of attraction of minus infinity into two components: one plo
as the green region and the other plotted as the red region. The green region is the collection of all points that go to minus infinity
at least one iterate bigger than the unstable fixed pointqm . The red set is the region of all the other points that go to minus infinity.~b! Detail
of Fig. 15~a! in the region shown as the white rectangle.
3-13



e
a

or

ls

f

on
to
ter-
ple,

pa-
ry
iant
ions
ter

or

es

ss

-
f

re
ke

BREBAN, NUSSE, AND OTT PHYSICAL REVIEW E68, 066213 ~2003!
As an illustration, we construct the following model:

f m~x!52m1x23x22x413.6x62x8. ~27!

Calculations show thatf m satisfies all the requirements of th
saddle-node bifurcation theorem for undergoing a backw
saddle-node bifurcation atx* 50 andm* 50. Figure 17~a!
shows the graph off m versusx at m5m* . Figure 17~b!
shows how the basin structure of the mapf m varies with the
parameterm. For positive values ofm, f m has only one at-

FIG. 19. The chaotic repeller off m versusm generated by the
PIM-triple method.m** is an approximate parameter value whe
an indeterminate saddle-node bifurcation of a periodic orbit ta
place; see Fig. 20.
06621
rd

tractor which is at minus infinity. The basin of this attract
is the whole real axis. Asm decreases throughm* 50, a new
fixed-point attractor is created atx* 50. The basin of attrac-
tion of this fixed point has infinitely many disjoint interva
displaying fractal features@indicated in black in Fig. 17~b!#.
This is similar to the blue basinB@m# of the attractorBm of
the previous one-dimensional model~see Sec. II A!.

The blue region in Fig. 18~a! is the basin of attraction o
the stable fixed point destroyed asm increases throughm* .
For every value ofm we consider, the mapf m has invariant
Cantor sets. The trajectories of points which are located
an invariant Cantor set do not diverge to infinity. One way
display such Cantor sets is to select uniquely defined in
vals whose end points are on the Cantor set. For exam
Fig. 18~a! shows green and red regions. For every fixed
rameter valuem, the collection of points that are bounda
points of the red and green regions constitutes an invar
Cantor set. In order to describe these green and red reg
we introduce the following notation. For each parame
value m, let pm be the leftmost fixed point off m @see Fig.
17~a!#. For every x0,pm , the sequence of iterates$xn

5 f m
[n] (x0)% is decreasing and diverges to minus infinity. F

each value ofm, let qm be the fixed point off m to the right of
x50 at which (] f m /]x)(qm).1. A point (x;m) is colored
green if its trajectory diverges to minus infinity and it pass
through the interval (qm ,`), and it is colored red if its tra-
jectory diverges to minus infinity and it does not pa
through the interval (qm ,`). Denote the collection of points
(x;m) that are colored green byG@m# and the collection of
points (x;m) that are colored red byR@m#. Using the meth-
ods and techniques of@22#, it can be shown that the collec
tion of points (x;m) which are common boundary points o

s

r

s

t
-
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o

FIG. 20. The chaotic repelle
of the map f m in the vicinity of
the saddle-node bifurcation with
the horizontal axis rescaled~from
m to! ~a! (m2m* )21/2 ~notice
that the chaotic repeller become
asymptotically periodic! and ~b!
(m2m** )21/2, where m**
50.234 953 84. We believe tha
m** corresponds to the approxi
mate value of the parameterm
where a saddle-node bifurcatio
of a periodic orbit of f m takes
place on the Cantor setC@m#. In
this case, the chaotic repeller als
becomes asymptotically periodic.
3-14
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SCALING PROPERTIES OF SADDLE-NODE . . . PHYSICAL REVIEW E 68, 066213 ~2003!
G@m# andR@m# is a Cantor setC@m# @23#. In particular, the
results of @22# imply that for m5m* 50 the pointx* 50
belongs to the invariant Cantor setC@m* #.

Figure 18~b! is a close-up of Fig. 18~a! in the region of
the saddle-node bifurcation. For values ofm.m* , in the
vicinity of (x* ;m* ), one notices a fractal alternation of re
and green stripes. The green and red stripe structure in
18~b! shares qualitative properties with the structure in F
2~b!. All the analysis in Sec. II can be adapted straightf
wardly to fit this situation.

Figure 19 shows how the chaotic repeller of the mapf m ,
C@m#, varies withm. The chaotic repeller is generated n
merically using the proper interior maximum~PIM!-triple
method. For an explanation of this method see Nusse
Yorke @24#. Using arguments similar to those in Sec. II C, w
predict that changing the horizontal axis of Fig. 19 fromm
to (m2m* )21/2 makes the chaotic repeller asymptotica
periodic. Numerical results confirming this are presen
in Fig. 20~a!. For f m given by Eq.~27!, we were able to
find a parameter valuem** 50.234 953 84~see Fig. 19!
where changing the horizontal axis of Fig. 19 fromm to
(m2m** )21/2 @see Fig. 20~b!# apparently makes the chaot
repeller asymptotically periodic@with a different period than
that of Fig. 20~a!#. As in the case discussed in Sec. II, pa
the saddle-node bifurcation off m at m* , infinitely many
other saddle-node bifurcations of periodic orbits take pl
on the invariant Cantor setC@m#. We believe thatm** is an
approximate value ofm where such a saddle-node of a pe
odic orbit takes place.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated scaling properties
saddle-node bifurcations that occur on fractal basin bou
D

s

on
,

l.
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aries. Such situations are known to be indeterminate in
sense that it is difficult to predict the eventual fate of an or
that tracks the prebifurcation node attractor as the sys
parameter is swept through the bifurcation. We have fi
analyzed the case of one-dimensional discrete maps. U
the normal form of the saddle-node bifurcation and gene
properties of fractal basin boundaries, we established the
lowing universal~i.e., model independent! scaling results:~i!
scaling of the fractal basin boundary of the static~i.e., un-
swept! system near the saddle-node bifurcation,~ii ! the scal-
ing dependence of the orbit’s final destination with the
verse of the sweeping rate,~iii ! the time it takes for an
attractor to capture a swept orbit scales with the21/3 power
of the sweeping rate, and~iv! scaling of the effect of noise on
the capture probability of an attractor with the 5/6 power
the sweeping rate. All these results were demonstrated
merically for a one-dimensional map example.

Following our one-dimensional investigations, we ha
explained and demonstrated numerically that these new
sults also apply to two-dimensional maps. Our numerical
ample was a two-dimensional map that results from a Po
caré section of the forced Duffing oscillator. In the la
section of the paper, we have discussed how the new re
listed above apply to the case where a saddle-node bifu
tion occurs on an invariant Cantor set which is embedded
a basin of attraction, and we have supported our discus
by numerics.
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